Year: 2 Term: Autumn 1, 7weeks NATIONAL CURRICULUM , KS1 TAF: WTS, EXS, GDS

Week 1-3 Place value \& <> =	Week 4 \& and part of 5 Calculation Number bonds	Week part of 5-7 Calculation Addition
Read and write numbers to at least 100 in numerals and in words read and write numbers in numerals up to 100 Recognise the place value of each digit in a two-digit number (tens, ones) including 0 as a place holder Use place value and number facts to solve problems Partition numbers in different ways (for example, 23=20 +3 and 23 $=10+13)$ partition a two-digit number into tens and ones to demonstrate an understanding of place value, though they may use structured resources to support them partition any two-digit number into different combinations of tens and ones, explaining their thinking verbally, in pictures or using apparatus Identify, represent and estimate numbers using different representations, including the number line Compare and order numbers from 0 up to 100 ; use <, > and = signs Count in steps of 2,5 and 10 from 0 , and in tens from any number, forward and backward count in twos, fives and tens from 0 and use this to solve problems	Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 Recall at least four of the six number bonds for 10 and reason about associated facts (e.g. $6+4=10$, therefore $4+6=10$ and 10 $-6=4)$ Recall all number bonds to and within 10 and use these to reason with and calculate bonds to and within 20, Recognising other associated additive relationships (e.g. If $7+3=10$, then $17+3=20$; if $7-3=4$, then $17-3=14 ;$ leading to if $14+3=17$, then $3+14=17$, $17-14=3 \text { and } 17-3=14)$ Use reasoning about numbers and relationships to solve more complex problems and explain their thinking (e.g. $29+17=15+4+$; 'together Jack and Sam have £14. Jack has £2 more than Sam. How much money does Sam have? etc.)	solve problems with addition and subtraction: - using concrete objects and pictorial representations, including those involving numbers, quantities and measures - applying their increasing knowledge of mental and written methods add and subtract numbers using concrete objects, pictorial representations, and mentally, including: - a two-digit number and ones - a two-digit number and tens Add and subtract two-digit numbers and ones, and two-digit numbers and tens, where no regrouping is required, explaining their method verbally, in pictures or using apparatus (e.g. $23+5 ; 46+20 ; 16-5 ; 88-30$)

Year: 2 Term: Autumn 2, 7 weeks

NATIONAL CURRICULUM , KS1 TAF: WTS, EXS, GDS

| $\begin{array}{c}\text { Week 1-2 } \\ \text { Calculation } \\ \text { Subtraction }\end{array}$ | $\begin{array}{c}\text { Week 3 Geometry } \\ \text { Position and direction }\end{array}$ | $\begin{array}{c}\text { Week 4-6 } \\ \text { Calculation }\end{array}$ |
| :--- | :--- | :--- | :--- |
| Addition \& Subtraction | | |$]$

Year: 2 Term: Spring 1, 6 weeks
NATIONAL CURRICULUM , KS1 TAF: WTS, EXS, GDS

Week 1-4 Calculation Multiplication and division	Week 5-6 Measure- money PV \& all 4 operations are included within the context of this strand
recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers count in twos, fives and tens from 0 and use this to solve problems recall multiplication and division facts for 2,5 and 10 and use them to solve simple problems, demonstrating an understanding of commutativity as necessary recall and use multiplication and division facts for 2,5 and 10 and make deductions outside known multiplication facts calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts solve unfamiliar word problems that involve more than one step (e.g. 'which has the most biscuits, 4 packets of biscuits with 5 in each packet or 3 packets of biscuits with 10 in each packet?') Notes and guidance (non-statutory) They connect the 10 multiplication table to place value, and the 5 multiplication table to the divisions on the clock face. relate to grouping and sharing discrete and continuous quantities, to arrays and to repeated addition. They begin to relate these to fractions and measures	recognise and use symbols for pounds ($£$) and pence (p); combine amounts to make a particular value find different combinations of coins that equal the same amounts of money know the value of different coins use different coins to make the same amount solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change Notes and guidance (non-statutory) They read and say amounts of money confidently and use the symbols $£$ and p accurately, recording pounds and pence separately.

Year: 2 Term: Spring 2, 6week

NATIONAL CURRICULUM, KS1 TAF: WTS, EXS, GDS

Week 1-2 Fracti ons	Week 3-4 Measures Time	Week 5 Calculations Number Bonds	Week 6 Calculations 4 operations recap
recognise, find, name and write fractions $1 / 31 / 42 / 4$ and $3 / 4$ a length, shape, set of objects or quantity identify $1 / 4,1 / 3,1 / 2,2 / 4,3 / 4$, of a number or shape, and know that all parts must be equal parts of the whole write simple fractions for $\text { example } \frac{1}{2} \text { of } 6=3$ and recognise the equivalence of $\frac{2}{4}$ and $\frac{1}{2}$ Notes and guidance (non-statutory) They connect unit fractions to equal sharing and grouping, to numbers when they can be calculated, and to measures, Pupils should count in fractions up to 10, starting from any number and using the and equivalence on the number line (for example, 111 $4 \quad \frac{2}{4}$ This reinforces the concept of fractions as numbers and that they can add up to more than one.	Tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times Read the time on the clock to the nearest 15 minutes. Read the time on the clock to the nearest 5 minutes. Know the number of minutes in an hour and the number of hours in a day.	Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 recall at least four of the six number bonds for 10 and reason about associated facts (e.g. 6 +4 $=10$, therefore $4+6=10$ and 10 $-6=4)$ recall all number bonds to and within 10 and use these to reason with and calculate bonds to and within 20, recognising other associated additive relationships (e.g. If $7+3=10$, then $17+3=$ 20 ; if $7-3=4$, then $17-3=14$; leading to if $14+3=17$, then $3+$ $14=17,17-14=3$ and $17-3=$ 14)	recall multiplication and division facts for 2, 5 and 10 and use them to solve simple problems, demonstrating an understanding of commutativity as necessary recall and use multiplication and division facts for 2,5 and 10 and make deductions outside known multiplication facts solve unfamiliar word problems that involve more than one step (e.g. 'which has the most biscuits, 4 packets of biscuits with 5 in each packet or 3 packets of biscuits with 10 in each packet?') Add and subtract two-digit numbers and ones, and two-digit numbers and tens, where no regrouping is required, explaining their method verbally, in pictures or using apparatus (e.g. $23+5 ; 46+20 ; 16$ -5; 88 - 30) Add and subtract any 2 two-digit numbers using an efficient strategy, explaining their method verbally, in pictures or using apparatus (e.g. $48+35 ; 72-17$) Use reasoning about numbers and relationships to solve more complex problems and explain their thinking (e.g. $29+17=15+4+$; 'together Jack and Sam have £14. Jack has £2 more than Sam. How much money does Sam have? etc.)

Year: 2 Term: Summer 1, 6 weeks

NATIONAL CURRICULUM , KS1 TAF: WTS, EXS, GDS

Week 1-3 Geometry 2D shape, 3D shape				Week 4-5 Calculation Inverse + biggest number first	Week 6 Measure- rotate around mass, capacity, length/height and temperature		
identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid] compare and sort common 2-D and 3-D shapes and everyday objects. name some common 2-D and 3-D shapes from a group of shapes or from pictures of the shapes and describe some of their properties (e.g. triangles, rectangles, squares, circles, cuboids, cubes, pyramids and spheres). name and describe properties of 2-D and 3-D shapes, including number of sides, vertices, edges, faces and lines of symmetry. describe similarities and differences of 2-D and 3-D shapes, using their properties (e.g. that two different 2-D shapes both have only one line of symmetry; that a cube and a cuboid have the same number of edges, faces and vertices, but different dimensions).				Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems. Use reasoning about numbers and relationships to solve more complex problems and explain their thinking (e.g. $29+17=15+4+$; 'together Jack and Sam have £14. Jack has £2 more than Sam. How much money does Sam have? etc.)	choose measu tempe unit, us vessel compa record read s scales estima Notes Compa twice a	Wee riate sta in any di city (litre s, therm ths, ma >, < and s of ones umbers een	mate and ass (kg/g); st appropriate uring y and ens read ven and 'half as high';
Year: 2 Term: Summer 2 8weeks							
Week 1	Week 2	Week 3	Week 4	Week 5	$\begin{gathered} \hline \text { Week } \\ 6 \end{gathered}$	Week 7	Week 8

